| Hangzhou AquaSust Water Technology Co., Ltd. Head ofice: #2808, Baiyue Center, Linping, Hangzhou, Zhejiang, China M:+86 152 6746 2807 Email: [email protected] website: www.nihaowater.com www.chinambbr.com www.aquasust.com www.aquasustfactory.com |
||||||
| SBR Process Engineering Design Calculator | ||||||
| Blue block is the design datameter: Calculation item Brown: Example data Red: Item data Orange: Calculation formula or remarks |
||||||
| 1.External condition | ||||||
| 1.1 | Design scale | Q | m³/d | 50000 | 10000 | |
| 1.2 | Diurnal variation coefficient | Ka | 1.17 | 1.26 | ||
| 1.3 | Coefficient of total change | KT | 1.38 | 1.46 | ||
| 1.4 | Influent BOD5 | Lj | mg/L | 150 | 124 | |
| 1.5 | Water inlet CODCr | gj | mg/L | 330 | 318 | |
| 1.6 | Water inlet SS | Sj | mg/L | 200 | 165 | |
| 1.7 | Water inlet TN | Nj | mg/L | 35 | 29.8 | |
| 1.8 | Effluent BOD5 | Lch | mg/L | 20 | 20 | |
| 1.9 | Effluent CODCr | Cch | mg/L | 100 | 100 | |
| 1.10 | Effluent SS | Sch | mg/L | 20 | 20 | |
| 1.11 | Effluent TN | Nch | mg/L | 15 | 15 | |
| 1.12 | Design minimum water temperature | T | ℃ | 10 | 14.6 | |
| 1.13 | Sludge index | SVI | mLg | 150 | 160 | |
| 2. Selected parameter | ||||||
| 2.1 | Cycle length | Tc | h | 6 | 4 | The time of a complete cycle |
| 2.2 | Period number | N | times per day | 4 | 6 | Maximum number of running cycles per day for a pool |
| 2.3 | Reaction time | Tf | h | 4 | 2 | Refers only to the time of the reaction stage of the reaction pool |
| 2.4 | Settling time | Ts | h | 1 | 1 | Refers only to the time of the sedimentation stage of the sedimentation tank(also the reaction tank) |
| 2.5 | Decanting time | Tch | h | 1 | 1 | Refers only to the duration of the decanting stage of the sedimentation tank(also the reaction tank) |
| 2.6 | Pool depth | H | m | 5 | 4.5 | The difference between the highest water level and the lowest water level of the designed settling tank |
| 2.7 | Safe altitude | Hf | m | 0.7 | 0.7 | Prevent sludge from being carried out of the weir to the height of the sludge layer |
| 2.8 | Depth of protective layer | Hp | m | 0.25 | 0.25 | The depth of the weir to prevent scum from being brought out |
| 3. Calculated sludge volume | ||||||
| 3.1 | Design water capacity | Qd | m³/d | 58500 | 12600 | Qd=KdQ |
| 3.2 | Aerobic mud age | θcN | d | 8.0 | 5.1 | θcN=3.4F·1.103¹⁵⁻ᵀ BOD₅<1200kg/d, F=1.8; BOD₅≥6000kg/d,F=1.45) |
| 3.3' | Age test value of reactive mud | θ'cF | d | 11.9 | 7.2 | θ'CF=9CN/(1-2.9Na/(0.75L*OVc) Nd=Nj-0.05(Lj-Lch)-NCH oVc'=0.56+0.15-1.072-¹³(0.678c+0.17-1.072-¹ |
| 3.3 | Reaction mud age | θcF | d | 11.9 | 7.2 | OVc=0.56+0.15-1.072-15/(1/0'CF+0.17-1.072-15) |
| 3.4 | Anoxic mud age | θcD | d | 3.8 | 2.1 | θcD=θCF- θCN |
| 3.5 | Total sludge age | θc | d | 17.8 | 14.4 | 8c=θCF ·Tc/TF |
| 3.6 | Sludge yield coefficient | Y | kgSS/kgBOD5 | 1.137 | 1.161 | Y=K(0.75+0.6Sⱼ/Lⱼ-0.8*0.17*0.75θCF1072-15/(1+0.178CF1.072-¹5); K=0.9~0.95 |
| 3.7 | Total sludge volume of the reaction tank | St | kg | 154191 | 21924 | ST=QaθcY(Lj-Lch)y1000 |
| 4. Calculate the capacity of the reaction pool | ||||||
| 4.1 | Given maximum daily maximum flow rate | Qn | m³/h | 2880 | 669 | |
| 4.2 | Actual settling time | Ts | h | 1.83 | 1.83 | Ts=Ts+Tch-1/6 |
| 4.3 | Reaction pool capacity | V | m | 51194 | 7515 | V=STSVI{Hf+Hp+[(Hr+Hp)²+62400QnHTs/(STSVI·N)]1¹/²}/(1300Ts) |
| 5. Other parameters | ||||||
| 5.1 | Anoxic response period | TD | h | 1.3 | 0.6 | Tn=Tz/(1+8cx/Bcm) |
| 5.2 | Berobic reaction period | To | h | 2.7 | 1.4 | To=T-Tp |
| 5.3 | Intermittent water intake decantation depth | △H | m | 1.69 | 1.60 | △H=24Qn ·H/(N ·V) |
| Depth of continuous water intake decantation | △H | m | 1.41 | 1.20 | △H=24Qn-H/(N-V)(1-Tc/Tch) | |
| 5.4 | Sludge concentration at high water level | NWT | g/L | 3.01 | 2.92 | NWT=ST/V |
| 5.5 | Sludge concentration at low water level | NwL | g/L | 4.55 | 4.53 | NwL=ST ·H/(V ·HL) |
| 5.6 | Sludge load | Fw | kgBOD,/kgMLSS ·d | 0.085 | 0.143 | Fw=Lj/[θcY(Lj-Lch)] ·Tc/TF |
| 5.7 | Hydraulic retention time | t | h | 21.0 | 14.3 | t=24VQd |
| 5.8 | Select the number of pools in the intermittent water intake mode | n | pieces | 6 | 4 | Satisfy as much as possible simultaneously: (1)n≥2, (2)n=kiTc, (3)n=k2Tc/Tch, (4)n=k Tc/To |
| 5.9 | Wolume per pond | Vi | m² | 8532 | 1879 | V=V/n |
| 5.10 | Area of single pond | Fi | m² | 1706 | 417 | Fi=V/H |
| 5.11 | Water storage capacity of a single pond | △Vi | m³ | 2880 | 669 | △Vi=Vi ·△H/H |
| 5.12 | Calculated minimum water level | HL | m | 3.31 | 2.90 | HL=H-△H |
| 5.13 | Calculate the minimum mud level | Hs | m | 2.64 | 2.35 | Hs=H-Hp-△H-Hf |
| 5.14 | Width of single pool | B | m | 16.9 | 10.2 | Partition scheme by square pool B=(Fi/n)1/2 |
| 5.15 | Single pool length | L | m | 101.2 | 40.9 | L=Fi/B |
| 5.16 | Actual total area of square pool | As | m² | 10239 | 1670 | Partition area is not considered |
| 5.17 | Actual total volume of the square pool | Vs | m³ | 59385 | 8517 | Partition area is not considered |
| 5.18 | Pool elevation | H₁ | π | 0.8 | 0.6 | H1=0.6~0.8m |
| 5.19 | Total depth of the pool | Hz | π | 5.8 | 5.1 | Hz=H+H1 |
| 5.20 | Inlet flow of a single pool | Q | m³/h | 1440 | 223 | Q=△V/(TF/2) |
| 5.21 | The number of decanters in a single pool is provided | nb | pCS | 1 | 1 | |
| 5.22 | Single decanter flow rate | Qb | m³/h | 2880 | 669 | Qb=△V/(nb ·Tch) |
| 5.23 | The gutter is higher than the pool | Ho | πL | 1.20 | 1.60 | HO is obtained after the gutter bottom elevation is determined according to the engineering conditions |
| 5.24 | Drain depth when decanting | 8 | Ⅲ | 0.60 | 0.30 | Based on the slope of the drainage ditch and the amount of decantation |
| 5.25 | Maximum head | Hrax | πL | 3.20 | 2.60 | Hrax=H-Ho-8(When the bottom of the ditch is lower than the bottom of the pool: Hmax=H+Ho-δ) |
| 5.26 | Minimum head | Hmin | πL | 1.5 | 1.0 | Hmin=Hnax-△H |
| 5.27 | Decanter selection | Mod | HLB2880-1.5-1.7/5-800PC | HLB669-1.0-1.6/4.5-400PA | ||
| 6. Biological selector and reflux According to the combination of reaction tank and the sedimentation tank |
||||||
| 6.1 | The proportion of the volume of the reaction pool | P | % | 21.50% | 14.40% | P=1008cn/Bc |
| 6.2 | Biological selector single pool volume | V1 | m³ | 1836 | 271 | Vi=P ·Vi |
| 6.3 | Biological elector single pool length | L1 | m | 21.8 | 5.9 | L1=P ·L |
| 6.4 | Reflux ratio | R | % | 450% | 450% | |
| 6.5 | Reflux time | TR | h | 1.0 | 1.0 | |
| 6.6 | Reflux pump design flow rate | QR | m³/s | 1.80 | 0.28 | QR=R*Q/3600 |
| 6.7 | Reflux pump design head | H | πH₂O | 1.4 | 1.8 | Need to be determined by the resistance calculation |
| 6.8 | Number of reflux pumps running at the same time | nR | pCS | 3.0 | 2.0 | |
| 6.9 | Number of backflow pumps in reserve | nR1 | PCs | 1.0 | 1.0 | |
| 6.10 | Design flow of a single return pump | QR1 | m³/s | 0.6 | 0.1 | QR1=Qz/nR |
| 6.11 | Shaft power required for the return pump | Nc | kW | 8.2 | 2.5 | Nc=1000Q1*H;/102 |
| 6.12 | Overall efficiency of return pump | ηz | % | 75.00% | 65.00% | Check the pump efficiency curve |
| 6.13 | The return pump needs to be equipped with motor power | Nb | kW | 11.0 | 3.8 | Nb=Nc/Tz |
| 6.14 | The return pump needs to be equipped with motor power | Ne | kW | 0.1 | 4 | |
| Table 1: Minimum Sludge Age and Recommended Sludge Age When Removing Only Carbon-Containing Organics | ||||||||||||
| Sewage Treatment Plant Capacity | 100~150 | BOD₅ ≥6000kg/d | ||||||||||
| Minimum Sludge Retention Time (d) | 100~150 | 4 | ||||||||||
| Recommended Sludge Retention Time (d) | 75~120 | 5 | ||||||||||
| Table 2: Minimum Sludge Age Required for Nitrification and Recommended Sludge Age | ||||||||||||
| Sewage Treatment Plant Capacity | BODs<1200kg/d | BODs≥6000kg/d | ||||||||||
| Design Water Temperature/°C | 10 | 12 |
14 |
10 |
12 |
14 |
||||||
| Minimum Sludge Age/d | 10 | 8.2 | 6.8 | 8 | 6.6 | 5.4 | ||||||
| Recommended Sludge Age/d | 11 | 9.2 |
7.8 |
9 |
7.6 |
6.4 | ||||||
| Table 3: Specific Oxygen Consumption for Degrading Carbon-Containing Organic Matter 0vc (kgO₂/kgBOD₅) |
||||||||||||
| T/℃ | Mud age θc(d) | |||||||||||
| 4 | 5 | 6 | 8 | 9 | 10 | 12 | 14 | 16 | 18 | 20 | 25 | |
| 8 | 0.82 | 0.86 | 0.9 | 0.96 | 0.99 | 1.01 | 1.05 | 1.08 | 1.11 | 1.14 | 1.16 | 1.2 |
| 9 | 0.83 | 0.88 | 0.91 | 0.98 | 1 | 1.03 | 1.07 | 1.1 | 1.13 | 1.15 | 1.17 | 1.21 |
| 10 | 0.85 | 0.89 | 0.93 | 0.99 | 1.02 | 1.04 | 1.08 | 1.11 | 1.14 | 1.16 | 1.18 | 1.22 |
| 11 | 0.86 | 0.91 | 0.94 | 1.01 | 1.03 | 1.06 | 1.1 | 1.13 | 1.15 | 1.18 | 1.2 | 1.23 |
| 12 | 0.87 | 0.92 | 0.96 | 1.02 | 1.05 | 1.07 | 1.11 | 1.14 | 1.17 | 1.19 | 1.21 | 1.24 |
| 13 | 0.89 | 0.94 | 0.97 | 1.04 | 1.06 | 1.09 | 1.12 | 1.16 | 1.18 | 1.2 | 1.22 | 1.25 |
| 14 | 0.90 | 0.95 | 0.99 | 1.05 | 1.08 | 1.10 | 1.14 | 1.17 | 1.19 | 1.21 | 1.23 | 1.26 |
| 15 | 0.92 | 0.97 | 1.01 | 1.07 | 1.09 | 1.12 | 1.15 | 1.18 | 1.21 | 1.23 | 1.24 | 1.27 |
| Note: Valid when COD/Lj ≤ 2.2. | ||||||||||||
| German ATV Standard SVI Design Value | ||||||||||||
| Processing Target | SVI(mL/g) | |||||||||||
| Industrial wastewater has minimal impact. | Industrial wastewater has a significant impact. | |||||||||||
| Denitrification | 100~150 | 120~180 | ||||||||||
| Nitrification (and denitrification) | 100~150 | 120~180 | ||||||||||
| Sludge stabilization | 75~120 | 120~150 | ||||||||||


English
عربى
Español






