Home / Calculator / Aquasust SBR Process Engineering Design Calculator

Aquasust SBR Process Engineering Design Calculator

Date: 2023-08-11
               Hangzhou AquaSust Water Technology Co., Ltd.
            Head ofice: #2808, Baiyue Center, Linping, Hangzhou, Zhejiang, China
               M:+86 152 6746 2807 Email: [email protected] website: www.nihaowater.com  www.chinambbr.com
www.aquasust.com www.aquasustfactory.com
  SBR Process Engineering Design Calculator
Blue block is the design datameter: Calculation item
Brown: Example data
Red: Item data
Orange: Calculation formula or remarks
1.External condition
1.1  Design scale Q m³/d 50000  10000 
1.2  Diurnal variation coefficient Ka 1.17  1.26 
1.3  Coefficient of total change KT 1.38  1.46 
1.4  Influent BOD5 Lj mg/L 150  124 
1.5  Water inlet CODCr gj mg/L 330  318 
1.6  Water inlet SS Sj mg/L 200  165 
1.7  Water inlet TN Nj mg/L 35  29.8 
1.8  Effluent BOD5 Lch mg/L 20  20 
1.9  Effluent CODCr Cch mg/L 100  100 
1.10  Effluent SS Sch mg/L 20  20 
1.11  Effluent TN Nch mg/L 15  15 
1.12  Design minimum water temperature T 10  14.6 
1.13  Sludge index SVI mLg 150  160 
2. Selected parameter
2.1  Cycle length Tc h The time of a complete cycle
2.2  Period number N times per day Maximum number of running cycles per day for a pool
2.3  Reaction time Tf h Refers only to the time of the reaction stage of the reaction pool
2.4  Settling time Ts h Refers only to the time of the sedimentation stage of the sedimentation tank(also the reaction tank)
2.5  Decanting time Tch h 1 Refers  only  to  the  duration  of  the  decanting  stage  of  the  sedimentation  tank(also the   reaction   tank)
2.6  Pool depth H m 4.5  The difference between the highest water level and the lowest water level of the designed settling tank
2.7  Safe altitude Hf m 0.7  0.7  Prevent sludge from being carried out of the weir to the height of the sludge layer
2.8  Depth of protective layer Hp m 0.25  0.25  The depth of the weir to prevent scum from being brought out
3. Calculated sludge volume
3.1  Design water capacity Qd m³/d 58500  12600  Qd=KdQ
3.2  Aerobic mud age θcN d 8.0  5.1  θcN=3.4F·1.103¹⁵⁻ᵀ
BOD₅<1200kg/d, F=1.8; BOD₅≥6000kg/d,F=1.45)
3.3' Age test value of reactive mud θ'cF d 11.9  7.2  θ'CF=9CN/(1-2.9Na/(0.75L*OVc)
Nd=Nj-0.05(Lj-Lch)-NCH
oVc'=0.56+0.15-1.072-¹³(0.678c+0.17-1.072-¹
3.3  Reaction mud age θcF d 11.9  7.2  OVc=0.56+0.15-1.072-15/(1/0'CF+0.17-1.072-15)
3.4  Anoxic mud age θcD d 3.8  2.1  θcD=θCF- θCN
3.5  Total sludge age θc d 17.8  14.4  8c=θCF ·Tc/TF
3.6  Sludge yield coefficient Y kgSS/kgBOD5 1.137  1.161  Y=K(0.75+0.6Sⱼ/Lⱼ-0.8*0.17*0.75θCF1072-15/(1+0.178CF1.072-¹5); K=0.9~0.95
3.7  Total sludge volume of the reaction tank St kg 154191  21924  ST=QaθcY(Lj-Lch)y1000
4. Calculate  the  capacity  of  the  reaction  pool
4.1  Given maximum daily maximum  flow  rate Qn m³/h 2880  669 
4.2  Actual  settling  time Ts h 1.83  1.83  Ts=Ts+Tch-1/6
4.3  Reaction  pool  capacity V m 51194  7515  V=STSVI{Hf+Hp+[(Hr+Hp)²+62400QnHTs/(STSVI·N)]1¹/²}/(1300Ts)
5. Other parameters
5.1  Anoxic response period TD h 1.3  0.6  Tn=Tz/(1+8cx/Bcm)
5.2  Berobic reaction period To h 2.7  1.4  To=T-Tp
5.3  Intermittent water intake decantation  depth △H m 1.69  1.60  △H=24Qn ·H/(N ·V)
Depth of continuous  water  intake  decantation △H m 1.41  1.20  △H=24Qn-H/(N-V)(1-Tc/Tch)
5.4  Sludge concentration at high water level NWT g/L 3.01  2.92  NWT=ST/V
5.5  Sludge concentration at low water level NwL g/L 4.55  4.53  NwL=ST ·H/(V ·HL)
5.6  Sludge load Fw kgBOD,/kgMLSS ·d 0.085  0.143  Fw=Lj/[θcY(Lj-Lch)] ·Tc/TF
5.7  Hydraulic   retention   time t h 21.0  14.3  t=24VQd
5.8 Select  the  number  of  pools  in  the  intermittent  water   intake   mode n pieces Satisfy  as  much  as  possible  simultaneously: (1)n≥2, (2)n=kiTc, (3)n=k2Tc/Tch, (4)n=k Tc/To
5.9  Wolume per pond Vi 8532  1879  V=V/n
5.10  Area of single  pond Fi 1706  417  Fi=V/H
5.11  Water storage capacity of a single pond △Vi 2880  669  △Vi=Vi ·△H/H
5.12  Calculated  minimum  water level HL m 3.31  2.90  HL=H-△H
5.13  Calculate the minimum mud level Hs m 2.64  2.35  Hs=H-Hp-△H-Hf
5.14  Width of single  pool B m 16.9  10.2  Partition   scheme  by   square  pool  B=(Fi/n)1/2
5.15  Single pool  length L m 101.2  40.9  L=Fi/B
5.16  Actual total area of square pool As 10239  1670  Partition  area   is  not  considered
5.17  Actual total volume of  the square pool Vs 59385  8517  Partition  area   is  not  considered
5.18  Pool  elevation H₁ π 0.8  0.6  H1=0.6~0.8m
5.19  Total depth of the pool Hz π 5.8  5.1  Hz=H+H1
5.20  Inlet flow of a single pool Q m³/h 1440  223  Q=△V/(TF/2)
5.21  The number of decanters in a single pool is provided nb pCS
5.22  Single decanter flow rate Qb m³/h 2880  669  Qb=△V/(nb ·Tch)
5.23  The gutter is higher than the pool Ho πL 1.20  1.60  HO is obtained after the gutter bottom elevation  is determined according to the engineering  conditions
5.24  Drain depth when  decanting 0.60  0.30  Based on the slope of the drainage ditch and the amount of decantation
5.25  Maximum head Hrax πL 3.20  2.60  Hrax=H-Ho-8(When the bottom of the ditch is lower than the bottom of  the pool: Hmax=H+Ho-δ)
5.26  Minimum head Hmin πL 1.5  1.0  Hmin=Hnax-△H
5.27  Decanter selection Mod HLB2880-1.5-1.7/5-800PC HLB669-1.0-1.6/4.5-400PA
6. Biological  selector  and  reflux
According to the combination of reaction tank and the sedimentation  tank
6.1  The proportion of the volume of  the reaction pool P % 21.50% 14.40% P=1008cn/Bc
6.2  Biological selector single  pool  volume V1 1836  271  Vi=P ·Vi
6.3  Biological  elector  single pool  length L1 m 21.8  5.9  L1=P ·L
6.4  Reflux ratio R % 450% 450%
6.5  Reflux time TR h 1.0  1.0 
6.6  Reflux pump  design  flow  rate QR m³/s 1.80  0.28  QR=R*Q/3600
6.7  Reflux pump  design  head H πH₂O 1.4  1.8  Need to be determined by the resistance calculation
6.8  Number of reflux  pumps running at  the  same  time nR pCS 3.0  2.0 
6.9  Number of backflow  pumps  in  reserve nR1 PCs 1.0  1.0 
6.10  Design flow of a single return pump QR1 m³/s 0.6  0.1  QR1=Qz/nR
6.11  Shaft  power  required for the return  pump Nc kW 8.2  2.5  Nc=1000Q1*H;/102
6.12  Overall efficiency of  return  pump ηz % 75.00% 65.00% Check  the  pump  efficiency  curve
6.13  The return pump needs to be equipped with motor power Nb kW 11.0  3.8  Nb=Nc/Tz
6.14  The return pump needs to be equipped with motor power Ne kW 0.1 

Table 1: Minimum Sludge Age and Recommended Sludge Age When Removing Only Carbon-Containing Organics
Sewage Treatment Plant Capacity 100~150 BOD₅ ≥6000kg/d
Minimum Sludge Retention Time (d) 100~150 4
Recommended Sludge Retention Time (d) 75~120 5
Table 2: Minimum Sludge Age Required for Nitrification and Recommended Sludge Age 
Sewage Treatment Plant Capacity BODs<1200kg/d BODs≥6000kg/d
Design Water Temperature/°C 10

12


14


10


12


14
Minimum Sludge Age/d 10 8.2  6.8  8 6.6  5.4 
Recommended Sludge Age/d 11

9.2


7.8


9


7.6
6.4
    Table 3: Specific Oxygen Consumption for Degrading Carbon-Containing Organic Matter 0vc (kgO/kgBOD)
T/℃ Mud age θc(d)
4 5 6 8 9 10 12 14 16 18 20 25
8 0.82 0.86 0.9 0.96 0.99 1.01 1.05 1.08 1.11 1.14 1.16 1.2
9 0.83 0.88 0.91 0.98 1 1.03 1.07 1.1 1.13 1.15 1.17 1.21
10 0.85 0.89 0.93 0.99 1.02 1.04 1.08 1.11 1.14 1.16 1.18 1.22
11 0.86 0.91 0.94 1.01 1.03 1.06 1.1 1.13 1.15 1.18 1.2 1.23
12 0.87 0.92 0.96 1.02 1.05 1.07 1.11 1.14 1.17 1.19 1.21 1.24
13 0.89 0.94 0.97 1.04 1.06 1.09 1.12 1.16 1.18 1.2 1.22 1.25
14 0.90  0.95 0.99 1.05 1.08 1.10  1.14 1.17 1.19 1.21 1.23 1.26
15 0.92 0.97 1.01 1.07 1.09 1.12 1.15 1.18 1.21 1.23 1.24 1.27
Note: Valid when COD/Lj ≤ 2.2.
German ATV Standard SVI Design Value
Processing Target SVI(mL/g)
Industrial wastewater has minimal impact. Industrial wastewater has a significant impact.
Denitrification 100~150 120~180
Nitrification (and denitrification) 100~150 120~180
Sludge stabilization 75~120 120~150

Contact Us

*We respect your confidentiality and all information are protected.

×
Password
Get password
Enter password to download relevant content.
Submit
submit
Please send us a message